

**Answer on Question# 39985 - Math - Differential Calculus | Equations**

Find the derivative of  $f(x) = \ln x - e^{3x}$  and  $f(x) = \ln x - (x^2 - 4)$

**Solution:**

$$f(x) = \ln x - e^{3x}$$

Using: The sum rule:

$$(g \pm h)' = g' \pm h'$$

The chain rule:

If  $(x) = f(h(x))$ , then  $\frac{dg}{dx} = \frac{dg}{dh} \cdot \frac{dh}{dx}$

Constant division rule:  $(ag(x))' = ag'(x)$

Power rule:  $(x^n)' = nx^{n-1}$

As we know:  $(\ln x)' = \frac{1}{x}$ ,  $(e^x)' = e^x$ .

Therefore, we obtain

$$f'(x) = (\ln x)' - e^{3x} \cdot (3x)' = \frac{1}{x} - 3e^{3x}.$$

**Answer:**

$$f'(x) = \frac{1}{x} - 3e^{3x}$$

$$f(x) = \ln x - (x^2 - 4)$$

Using: The sum rule:  $(g \pm h)' = g' \pm h'$

$$(\ln x)' = \frac{1}{x}$$

Power rule:  $(x^n)' = nx^{n-1}$

Constant rule:  $(Const)' = 0$

Therefore, we obtain

$$f'(x) = (\ln x)' - (x^2)' + (4)' = \frac{1}{x} - 2x$$

**Answer:**  $f'(x) = \frac{1}{x} - 2x$