Answer on question 39513 - Math - Statistics

Test the significance of variation of the retail prices of the commudity in three principle cities; Bombay, Kolkata and Delhi. The four shops were chosen at random in each city and prices observed in rupees were as follows. Bombay 16 8 12 14 Kolkatta 14 10 10 6 Delhi 4 10 8 8 Do the data indicate the prices in the three cities are significantly different? **Solution**

 H_0 : $\mu_1 = \mu_2 = \mu_3$, i.e., the mean prices in the three cities are the same.

In order to simplify the calculation, subtract 10 from each observation. The deviations and their squares as follow:

Bombay		Kolkata		Delhi	
<i>X</i> ₁	X_{1}^{2}	<i>X</i> ₂	X_2^2	<i>X</i> ₃	X_{3}^{2}
6	36	4	16	-6	36
-2	4	0	0	0	0
2	4	0	0	-2	4
4	16	-4	16	-2	4
$\sum X_1 = 10$	$\sum X_1^2 = 60$	$\sum X_2 = 0$	$\sum X_2^2 = 32$	$\sum X_3 = -10$	$\sum X_3^2 = 44$

$$T = \sum X_1 + \sum X_2 + \sum X_3 = 10 + 0 - 10 = 0$$
$$C.F. = \frac{T^2}{N} = \frac{0^2}{12} = 0$$

TSS=Total sum of squares = $\sum X_1^2 + \sum X_2^2 + \sum X_3^2 - C \cdot F = 60 + 32 + 44 - 0 = 136$

$$SSB = \left[\frac{(\sum X_1)^2}{n_1} + \frac{(\sum X_2)^2}{n_2} + \frac{(\sum X_3)^2}{n_3}\right] - C.F. = \left[\frac{(10)^2}{4} + \frac{(0)^2}{4} + \frac{(-10)^2}{4}\right] - 0 = 50$$

SSW=SST-SSB=136-50=86.

The various sum of squares (S.S.) along with the degrees of freedom (d.f.) are shown in the following table

Source of variation	Sum of square	Degrees of	Mean sum of	F-Radio
		freedom	squares	
Between city	50	3-1=2	25	$E = \frac{25}{-2 + 616}$
Within city	86	9	9*556	$F = \frac{1}{9 \times 556} = 2 \times 616$
Total	136	12-1=11		

For $v_1 = 2$ and $v_2 = 9$, the table value of F at 5% l.o.s.=4*261

Since the calculated value of F is less than the table value of F the null hypothesis is accepted. We thus conclude that the mean prices in the three cities is not significantly different.