Answer on Question \#39804 - Math - Calculus

An ice cube tray filled with tap water is placed in the freezer and the temperature of the water is changing at the rate of $-12 e^{\wedge}-0.2 t$ degree fahrenheit per hour after t hours. The original temperature of the tap water was 70 degrees.

Questions:

a. Find a formula for the temperature of the water that has been in the freezer for t hours.
b. When will be the ice be ready? (Water freezed at 32 degrees)

Solution.

We have

$$
f(t)=-12 e^{-0.2 t}
$$

a. We can find the formula for the temperature of the water that has been in the freezer for t hours by taking the integral:

$$
F(t)=\int f(t) d t=\int\left(-12 e^{-0.2 t}\right) d t=-12 \int e^{-0.2 t} d t=\frac{-12}{-0.2} e^{-0.2 t}+C=60 e^{-0.2 t}+C
$$

We have a condition: the original temperature of the tap water was 70 degrees.
Then

$$
\begin{gathered}
F(0)=60 \cdot e^{-0.2 \cdot 0}+C=70 \\
60+C=70 \\
C=10
\end{gathered}
$$

So

$$
F(t)=60 e^{-0.2 t}+10
$$

b. The ice be ready at 32 degrees:

$$
\begin{gathered}
F(t)=32=60 e^{-0.2 t}+10 \\
60 e^{-0.2 t}=22 \\
e^{-0.2 t}=\frac{22}{60}=\frac{11}{30} \\
-0.2 t=\ln \frac{11}{30} \\
t=\ln \frac{11}{30} \cdot\left(-\frac{1}{0.2}\right)=-5 \cdot \ln \frac{11}{30} \approx 5
\end{gathered}
$$

Answer:

a. $60 e^{-0.2 t}+10$;
b. In about 5 hours.

