Answer on Question\#39765, Math, Calculus

An ice cube tray filled with tap water is placed in the freezer and the temperature of the water is changing at the rate of $-12 e^{\wedge}-0.2 t$ degree Fahrenheit per hour after t hours. The original temperature of the tap water was 70 degrees.

Questions:
a. Find a formula for the temperature of the water that has been in the freezer for t hours.
b. When will be the ice be ready? (Water freezed at 32 degrees)

Solution

The rate of change of the temperature of the water:

$$
\frac{d f}{d t}=-12 e^{-0.2 t}
$$

Let's find a formula for the temperature of the water that has been in the freezer for t hours by taking the integral:

$$
f(t)=\int \frac{d f}{d t} d t=\int\left(-12 e^{-0.2 t}\right) d t=-12 \int e^{-0.2 t} d t=\frac{-12}{-0.2} e^{-0.2 t}+C=60 e^{-0.2 t}+C .
$$

We know that original temperature of the tap water was 70 degrees:

$$
f(0)=60 e^{-0.2 \cdot 0}+C=70 \rightarrow C=10 .
$$

So

$$
f(t)=60 e^{-0.2 t}+10
$$

The ice is ready at 32 degrees:

$$
f\left(t_{i c e}\right)=60 e^{-0.2 t_{i c e}}+10=32 \rightarrow e^{-0.2 t_{i c e}}=\frac{32-10}{60}=\frac{11}{30} .
$$

Then

$$
t_{i c e}=-\frac{1}{0.2} \ln \frac{11}{30}=-5 \ln \frac{11}{30} \approx 5 \text { hours. }
$$

Answer: a. $60 e^{-0.2 t}+10 ;$ b. 5 hours.

