

Answer on Question #39341 – Math – Linear Algebra

Question. Find the point B in \mathbb{R}^3 in the plane $p : x + 2y - 3z = 12$ closest to the point $A = (1, 1, 1)$.

Solution. The point B in the plane p closest to A is a unique point on p such that the vector \overrightarrow{AB} is orthogonal to p . Thus to solve the problem we should find the intersection point of p with the line l orthogonal to p and passing through A .

The assumption that \overrightarrow{AB} is orthogonal to p is equivalent to the assumption that \overrightarrow{AB} is parallel to the normal vector \vec{n} to p .

Coordinates of \vec{n} are the coefficients of the left hand side of the equation of $p : x + 2y - 3z = 12$. Thus

$$\vec{n} = (1, 2, -3).$$

Therefore the parametric equation of the line l orthogonal to p and passing through A is the following one:

$$\begin{cases} x = 1 + t, \\ y = 1 + 2t, \\ z = 1 - 3t. \end{cases}$$

Substituting these formulas into the equation of p we get:

$$1 + t + 2(1 + 2t) - 3(1 - 3t) = 12,$$

$$1 + t + 2 + 4t - 3 + 9t = 12,$$

$$14t = 12,$$

$$t = \frac{12}{14} = \frac{6}{7}.$$

Hence point B has the following coordinates:

$$B = \left(1 + \frac{6}{7}, 1 + 2 \cdot \frac{6}{7}, 1 - 3 \cdot \frac{6}{7}\right) = \left(\frac{13}{7}, \frac{19}{7}, -\frac{11}{7}\right).$$

Answer.

$$B = \left(\frac{13}{7}, \frac{19}{7}, -\frac{11}{7}\right).$$