Answer on Question\#39316 - Math - Other

A 25 Kbps satellite link has a propagation delay of 400 ms . The transmitter employs the "go back n ARQ" scheme with n set to 10 . Assuming that each frame is 100 bytes long, what is the maximum data rate possible?
A) 5 Kbps
B) 10 Kbps
C) 15 Kbps
D) 20 Kbps

Solution

The transmission delay $t_{t r}$ for sending the packet is equal to

$$
t_{t r}=\frac{L}{C}=\frac{100 \cdot 8}{25000}=0.032
$$

seconds and $t_{\text {ack }}=0.4$
seconds. Let $t_{a c k}$ be the time until satellite receives an acknowledgment for a sent packet. In the time interval $T=t_{t r}+t_{a c k}=0.032+0.4=0.432$ we have that satellite sends a packet of length L. The average (transmission) rate (in bits per seconds) with which satellite sends data to endpoint is a function of n.

Let

$$
N_{0}=\frac{t_{a c k}}{t_{t r}}=\frac{0.4}{0.032}=12.5 \approx 13
$$

be the maximum number of packets satellite can send while waiting for an ACK. The rate $x(n)$ at which satellite sends packets to enpoint as a function of n is given by

$$
x(n)=\left\{\begin{array}{c}
\frac{n L}{T}=\frac{10 \cdot 800}{0.432} \approx 18519 \mathrm{bps}, \quad n \leqslant N_{0}+1 \\
C=25000 \mathrm{bps}, \quad n>N_{0}+1
\end{array}\right] . \text { Thus, } x(10) \approx 20 \mathrm{Kbps} .
$$

Answer

D)

