Question \#39253, Math, Algebra

Achieve \$225,500 at 8.65\% compounded continuously for 8 years, 145 days

Solution

If an amount P_{0} is invested in a savings account at interest rate k compounded continuously, then the amount $P(t)$ in the account after t years is given by the exponential function

$$
P(t)=P_{0} e^{k t}
$$

Because $k=0.0865, t=8+145 / 365 \approx 8.397260, P=\$ 225,500$, from the formula (1) we obtain the equation for the invested amount

$$
225,500=P_{0} e^{0.0865 \cdot 8 \cdot 397260} \text { or 225,500 }=P_{0} e^{0.726365}
$$

By dividing by $e^{0,726365}$ on both sides of the equation and rounding the answer to the nearest cent we find

$$
P_{0}=225,500 e^{-0.726365}=109066.21 .
$$

Since the $\$ 109066.21$ must be invested to achieve $\$ 225,500$.

Answer

\$109066.21

