

Answer on Question#39191 - Math – Statistics and Probability

Car security alarms go off at a mean rate of 4.0 per hour in a large Costco parking lot.

Find the probability that in an hour there will be (Round your answers to 4 decimal places.)

Probability

- (a) no alarms
- (b) fewer than five alarms
- (c) more than seven alarms

Solution

We can assume ξ has a Poisson distribution. The poisson distribution formula is

$$P(k) = Pr(\xi = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k=0,1,2,\dots$$

where $P(k)$ is the probability of the event that a random variable ξ takes on the value k , e is the constant 2.718..., λ (usually written as the Greek letter lambda) is the average number of events

(in our case, $\lambda = 4$)

a) $k = 0$

$$P(0) = \frac{e^{-4} 4^0}{0!} = e^{-4} \approx 0.0183$$

b) $\xi < 5$

$$P(\xi < 5) = |\text{additivity of probability}| = P(\xi = 0) + P(\xi = 1) + P(\xi = 2) + P(\xi = 3) + P(\xi = 4) = \\ = \frac{e^{-4} 4^0}{0!} + \frac{e^{-4} 4^1}{1!} + \frac{e^{-4} 4^2}{2!} + \frac{e^{-4} 4^3}{3!} + \frac{e^{-4} 4^4}{4!} \approx 0.6288$$

c) $\xi > 7$

$$P(\xi > 7) = |\text{probability of the complementary events}| = 1 - (P(\xi = 0) + P(\xi = 1) + P(\xi = 2) + P(\xi = 3) + \\ + P(\xi = 4) + P(\xi = 5) + P(\xi = 6) + P(\xi = 7)) = 0.0511$$