

Answer on Question #39003 - <Math> - <Algebra>.

Solve the following ordinary differential equations; $xdx + ydy + 4y^3(x^2 + y^2)dy$

Solution:

We can rewrite our equation:

$$x dx + (4(x^2 + y(x)^2)y(x)^3 + y(x))dy(x) = 0$$

Make the replacement, let $R(x, y) = x$ and $S(x, y) = 4y^3(x^2 + y^2) + y$. This is not exact equation, because $\frac{\partial R(x,y)}{\partial y} = 0 \neq 8xy^3 = \frac{\partial S(x,y)}{\partial x}$.

Next step we have to find an integrating factor $\mu(y)$ such that

$$\mu(y)R(x, y)dx + \mu(y)S(x, y)dy(x) = 0 \text{ is exact.}$$

This means that $\frac{\partial}{\partial y}(\mu(y)R(x, y)) = \frac{\partial}{\partial x}(\mu(y)S(x, y))$:

$$\frac{\partial \mu(y)}{\partial y} x = 8y^3 \mu(y) x$$

Isolate $\mu(y)$ to the left-hand side:

$$\frac{\frac{\partial \mu(y)}{\partial y}}{\mu(y)} = 8y^3$$

Integrate both sides with respect to y :

$$\log(\mu(y)) = 2y^4$$

Then we take exponentials of the both sides:

$$\mu(y) = e^{2y^4}$$

Go back to our expression and multiply it:

$$(4(x^2 + y(x)^2)y(x)^3 + y(x)) \frac{dy(x)}{dx} + x = 0 \text{ by } \mu(y(x)):$$

$$e^{2y(x)^4} x + \left(e^{2y(x)^4} (4(x^2 + y(x)^2)y(x)^3 + y(x)) \right) \frac{dy(x)}{dx} = 0$$

Let $P(x, y) = xe^{2y^4}$ and $Q(x, y) = e^{2y^4}(4y^3(x^2 + y^2) + y)$ this is an exact equation, because $\frac{\partial P(x,y)}{\partial y} = 8xe^{2y^4}y^3 = \frac{\partial Q(x,y)}{\partial x}$

Define $f(x, y)$ such that $\frac{\partial f(x,y)}{\partial x} = P(x, y)$ and $\frac{\partial f(x,y)}{\partial y} = Q(x, y)$:

Then the solution will be given by $f(x, y) = C_1$, where C_1 is an arbitrary constant. Integrate $\frac{\partial f(x,y)}{\partial x}$ with respect to x in order to find $f(x, y)$:

$$f(x, y) = \int e^{2y^4} x dx = \frac{1}{2} e^{2y^4} x^2 + g(y)$$

Where $g(y)$ is an arbitrary function of y .

Differentiate $f(x, y)$ with respect to y in order to find the $g(y)$:

$$\frac{\partial f(x, y)}{\partial y} = \frac{\partial}{\partial y} \left(\frac{1}{2} e^{2y^4} x^2 + g(y) \right) = 4e^{2y^4} y^3 x^2 + \frac{\partial g(y)}{\partial y}$$

Substitute into $\frac{\partial f(x, y)}{\partial y} = Q(x, y)$:

$$4e^{2y^4} y^3 x^2 + \frac{\partial g(y)}{\partial y} = e^{2y^4} (y + 4y^3(x^2 + y^2))$$

Then we solve for $\frac{\partial g(y)}{\partial y}$:

$$\frac{\partial g(y)}{\partial y} = e^{2y^4} (4y^5 + y)$$

Integrate $\frac{\partial g(y)}{\partial y}$ with respect to y :

$$g(y) = \int e^{2y^4} (4y^5 + y) dy = \frac{1}{2} e^{2y^4} y^2$$

Substitute $g(y)$ into $f(x, y)$:

$$f(x, y) = \frac{1}{2} e^{2y^4} x^2 + \frac{1}{2} e^{2y^4} y^2$$

Eventually we get the solution $f(x, y) = C_1$ (as we note earlier).

The solution is $C_1 = \frac{1}{2} e^{2y^4} x^2 + \frac{1}{2} e^{2y^4} y^2$

$$C_1 = \frac{1}{2} x^2 e^{2y(x)^4} + \frac{1}{2} e^{2(x)^4} y(x)^2$$

$$\text{Answer: } C_1 = \frac{1}{2} x^2 e^{2y(x)^4} + \frac{1}{2} e^{2(x)^4} y(x)^2$$