Question\#38948, Math, Trigonometry

I need help with the following proofs.
a.) $\cos (n \theta)=\cos ((n-2) \theta)-2 \sin \theta \sin ((n-1) \theta)$
b.) $(\sin (x / 2)+\sin (x)) /(\cos (x / 2)-\cos (x))=\cot (x / 4)$
c.) $(\sin \alpha-\cos \alpha+1) /(\sin \alpha+\cos \alpha-1)=(\sin \alpha+1) / \cos \alpha$
d.) $\tan (\mathrm{x} / 2)=(1-\cos (\mathrm{x})+\sin (\mathrm{x})) /(1+\cos (\mathrm{x})+\sin (\mathrm{x}))$

Solution

a.) $\cos (n \theta)=\cos ((n-2) \theta)-2 \sin \theta \sin ((n-1) \theta)$

First we rewrite the identity in the form

$$
\cos (n \theta)-\cos ((n-2) \theta))=-2 \sin \theta \sin ((n-1) \theta) .
$$

Then using

$$
\begin{equation*}
\cos A-\cos B=-2 \sin \left(\frac{A-B}{2}\right) \sin \left(\frac{A+B}{2}\right) \tag{1}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
\cos (n \theta)-\cos ((n-2) \theta) & =-2 \sin \left(\frac{n \theta-n \theta+2 \theta}{2}\right) \sin \left(\frac{2 n \theta-2 \theta}{2}\right) \\
& =-2 \sin \theta \sin ((n-1) \theta)) .
\end{aligned}
$$

Thus, we started with the left side and deduced the right side, so the proof is complete.
b.) $(\sin (x / 2)+\sin (x)) /(\cos (x / 2)-\cos (x))=\cot (x / 4)$

Using

$$
\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)
$$

the identity (1) and cancelling we obtain

$$
\frac{\sin \frac{x}{2}+\sin x}{\cos \frac{x}{2}-\cos x}=\frac{2 \sin \frac{3 x}{4} \cos \left(-\frac{x}{4}\right)}{-2 \sin \left(-\frac{x}{4}\right) \sin \frac{3 x}{4}}=\frac{\cos \frac{x}{4}}{\sin \frac{x}{4}}=\cot \frac{x}{4}
$$

We started with the left side and deduced the right side, so the proof is complete.
c.) $(\sin \alpha-\cos \alpha+1) /(\sin \alpha+\cos \alpha-1)=(\sin \alpha+1) / \cos \alpha$

Because $\sin \alpha+\cos \alpha-1 \neq 0$ and $\cos \alpha \neq 0$, multiplying the both sides of the identity by their product, we rewrite the identity in the form

$$
(\sin \alpha-\cos \alpha+1) \cos \alpha=(\sin \alpha+\cos \alpha-1) \cdot(\sin \alpha+1)
$$

Then we start with the left side.

$$
(\sin \alpha-\cos \alpha+1) \cos \alpha=\sin \alpha \cos \alpha+\cos \alpha-\cos ^{2} \alpha
$$

Now we stop and work with the right side.

$$
\begin{aligned}
(\sin \alpha+\cos \alpha-1) \cdot(\sin \alpha+1) & =\sin ^{2} \alpha+\sin \alpha \cos \alpha+\cos \alpha-1 \\
& =\sin \alpha \cos \alpha+\cos \alpha-\left(1-\sin ^{2} \alpha\right) \\
& =\sin \alpha \cos \alpha+\cos \alpha-\cos ^{2} \alpha
\end{aligned}
$$

We have used the Pythagorean identity.
We have deduced the same expression from each side, so the proof is complete.
d.) $\tan (x / 2)=(1-\cos (x)+\sin (x)) /(1+\cos (x)+\sin (x))$

We start with the right side. Because $x=2 \cdot \frac{x}{2}$ from double-angle identities

$$
\sin 2 x=2 \sin x \cos x, \cos 2 x=2 \cos ^{2} x-1 \text { and } \cos 2 x=1-2 \sin ^{2} x
$$

we easily get

$$
\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}, \quad 1-\cos x=2 \sin ^{2} \frac{x}{2}, \quad 1+\cos x=2 \cos ^{2} \frac{x}{2}
$$

Using these identities and cancelling we obtain

$$
\frac{1-\cos x+\sin x}{1+\cos x+\sin x}=\frac{2 \sin \frac{x}{2}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)}{2 \cos \frac{x}{2}\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\tan \frac{x}{2}
$$

We started with the right side and deduced the left one, so the proof is complete.

