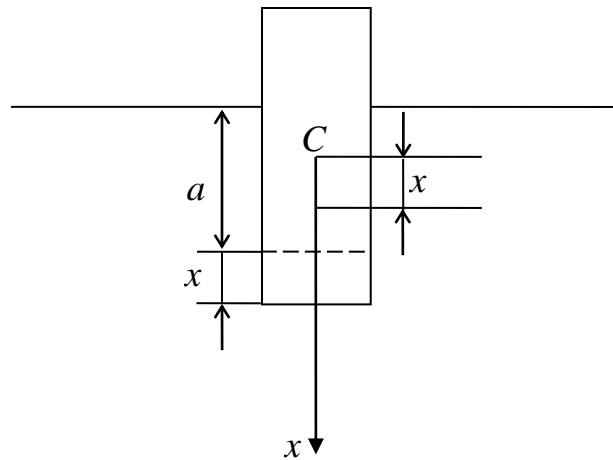


Answer on Question#38888 - Math - Other

A cylinder with a diameter 1.0 m is stands in water with its axis vertical. When depressed slightly and released, it oscillates with a time period of 2 s. Determine the mass of the cylinder.

Solution

We denote the mass of the cylinder by m then its weight is equal to $P = mg$, where $g = 9,8 \text{ m/s}^2$ is the gravitational acceleration. While being in the position of equilibrium the cylinder is immersed in water to a depth equal to a (See the figure).



In this position the force of gravity and the force of Archimedes are in equilibrium. Let γ denotes the specific weight of the water. Because the volume of the immersed part of the cylinder equals $V = \pi r^2 a$, where the cylinder radius $r = 0,5 \text{ m}$, the force of Archimedes is equal to $F_{ar} = \gamma V = \pi \gamma r^2 a$. Hence, we have from the equation $P = F_{ar}$, i. e.

$$mg = \pi \gamma r^2 a. \quad (1)$$

To determine the motion of the cylinder with respect to the position of equilibrium we consider the action of water as an additional force of Archimedes. We direct downward the Ox – axis, putting its origin in the placement of equilibrium of the gravity center C .

The force of Archimedes is equal to

$$F_{ar} = \pi \gamma r^2 (a + x). \quad (2)$$

From Newton's second law of motion of the center of gravity with using (1) and (2) we have

$$\begin{aligned} m\ddot{x} &= P - F_{ar} \\ &= mg - \pi \gamma r^2 a - \pi \gamma r^2 x \\ &= -\pi \gamma r^2 x. \end{aligned}$$

Hence, the position $x(t)$ of the mass center satisfies the second-order linear homogeneous differential equation

$$m\ddot{x} + \pi \gamma r^2 x = 0.$$

Dividing the both sides of the equation by $m \neq 0$ we obtain

$$\ddot{x} + \frac{\pi\gamma r^2}{m}x = 0.$$

Now if we denote $k^2 = \pi\gamma r^2/m$ then the last equation is rewritten

$$\ddot{x} + k^2x = 0. \quad (3)$$

We expect oscillatory motion. If we attempt a solution of (3) of the form $x(t) = A\cos(\omega t + \varphi)$ for some frequency ω and amplitude A , we find upon substitution that $\omega = k$. Therefore the displacement of the cylinder is given by

$$x(t) = A\cos(kt + \varphi).$$

These solutions represent an oscillations of frequency k , and period $T = 2\pi/k$, so $k = 2\pi/T$. Hence

$$m = \frac{\pi\gamma r^2}{k^2} = \frac{\gamma r^2 T^2}{4\pi}. \quad (4)$$

Thus substituting all known values into the formula (4) we evaluate

$$m = \frac{1000\text{kg}/\text{m}^3 9,8\text{m}/\text{s}^2 0,25\text{m}^2 4\text{s}^2}{4\pi} \approx 779.8692209 \text{ kg} \approx 780 \text{ kg}.$$

Answer:

780 kg