

Question #38805, Math, Geometry

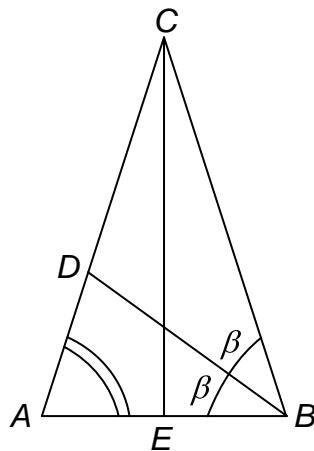
BD Bisects ABC

IF AB=6. BC= 14. AC=14

Find BD

Solution

If we denote the $\angle ABD$ by β then $\angle ABC = 2\beta$. Because $BC = AC$, the triangle ABC is an isosceles one, so we have $\angle ABC = \angle CAB = 2\beta$.



The sine rule states that the sides of a triangle are proportional to the sines of the opposite angles, so from the triangle ABD we obtain the equation (see the Figure):

$$\frac{BD}{\sin \angle CAB} = \frac{AB}{\sin \angle BDA}.$$

The sum of the angles of a triangle is equal 180° , so

$$\angle BDA = 180^\circ - \angle CAB - \angle ABD = 180^\circ - 3\beta.$$

Thus by substituting the angles expression into the above equation and simplifying we obtain

$$BD = AB \frac{\sin 2\beta}{\sin 3\beta}. \quad (1)$$

Two of the basic compound angle formula is

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha, \quad (2)$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \beta \sin \alpha. \quad (3)$$

By substituting β for α into the identity (2) first we get

$$\sin 2\beta = 2 \sin \beta \cos \beta. \quad (4)$$

By substituting 2β for α into the formula (2), using the identity (4) and simplifying the result we obtain

$$\sin 3\beta = \sin \beta (\cos 2\beta + \cos^2 \beta). \quad (5)$$

By putting the equalities (4), (5) into the equation (1) and cancelling the fraction we get

$$BD = AB \frac{2 \cos \beta}{\cos 2\beta + 2 \cos^2 \beta}. \quad (6)$$

Since the triangle ABC is an isosceles, then the altitude CE is the median of the triangle, that is

$$EB = AE = 0.5AB = 3.$$

We find from the right triangle EBC

$$\cos 2\beta = \frac{EB}{CB} = \frac{3}{14}.$$

Putting $\alpha = \beta$ in the (3) with Pythagorean identity gives

$$\cos 2\beta = 2\cos^2 \beta - 1.$$

Because the angle β is acute we have

$$\cos \beta = \sqrt{\frac{1 + \cos 2\beta}{2}} = \frac{1}{2} \sqrt{\frac{17}{7}}.$$

Finally, by substituting the two obtained values and $AB = 6$ into the equality (6) we find

$$BD = 6 \frac{2 \cdot 0.5}{\frac{17}{14} + \frac{3}{14}} \sqrt{\frac{17}{7}} = \frac{3}{5} \sqrt{119} \approx 6.5452.$$

Answer

$$\frac{3}{5} \sqrt{119}$$