Answer on Question \#38661 - Math - Statistics

Number of defective blades in a packet has binomial distribution $B(n, p)$ with parameters $n=10$ and $p=0.002$

Binomial distribution can be approximated using Poisson with parameter $m=$ $n p=0.02$.

Let X equals to number of defective blades in a packet.

$$
p_{0}=P(X=0)=e^{-0.02}=0.9802
$$

Using the formula

$$
p_{x+1}=p_{x} \cdot \frac{m}{x+1}
$$

we have:

$$
\begin{gathered}
p_{1}=p_{0} \cdot \frac{0.02}{1}=0.019604 \\
p_{2}=p_{1} \cdot \frac{0.02}{2}=0.00019604 \\
p_{3}=p_{2} \cdot \frac{0.02}{3} \approx 0
\end{gathered}
$$

Thus expected frequencies are:

$$
\begin{gathered}
n_{0}=10000 \cdot p_{0} \approx 9802 \\
n_{1}=10000 \cdot p_{1} \approx 196 \\
n_{2}=10000 \cdot p_{2} \approx 2 \\
n_{3} \approx 0
\end{gathered}
$$

