## Answer on Question\#38714-Math - Geometry

Question: Find the acute angle between the diagonal and the longer side of a rectangle with sides 12 cm and 5 cm .

Solution. Let us begin by making a drawing:


Here we have denoted the vertices of the rectangle as $A, B, C, D$, supposing that $A D=$ 12 cm and $C D=5 \mathrm{~cm}$.

The sought angle between the diagonal and the longer side of $A B C D$ is $\angle C A D$.
Note that the triangle $A D C$ is a right triangle (since $\angle A D C$ is an angle of a rectangle and thus $\angle A D C=90^{\circ}$ ). In this triangle, we are given the lengths of adjacent and opposite sides to angle $\angle C A D$; thus, we can find the tangent of this angle using the standard formula:

$$
\tan \angle C A D=\frac{C D}{A D}=\frac{5}{12}
$$

The angle $\angle C A D$ itself can be found using the inverse function:

$$
\angle C A D=\tan ^{-1}\left(\frac{5}{12}\right)=22.62^{\circ}
$$

Answer. The acute angle between the diagonal and the longer side of a rectangle with sides 12 cm and 5 cm equals $22.62^{\circ}$.

