

Question#38671, Math, Calculus

Find the limit if it exist. If it does not exist explain why.

Two questions

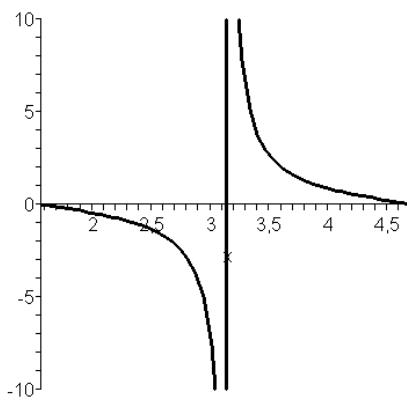
1

Limit of $\cot x$

As x approaches π

and

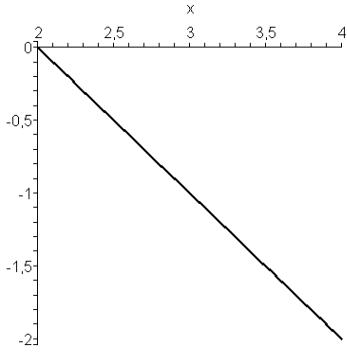
2


Limit of $(2 - \text{absolute}(-x))$

As x approaches 3

I have the answers from the book but dont understand what process I need to get there. #1 doesnt exist but my in my calc it looks like its 18.something. #2 I substituted in the 3 but get -1 but it also doesnt exist somehow.

Solution


1. We start from an informal definition. The function $f(x)$ is said to have the limit l as x approaches (or tends to) a if the values of $f(x)$ can be made as close as we like to l by taking x sufficiently close to a . If we sketch the $\cot x$ graph on the segment $[\pi/2, 3\pi/2]$ we must conclude that this function has no limit as x approaches π in the sense of previous definition, because the graph has a vertical asymptote when $x = \pi/2$.

The function $\cot x$ values cannot group around any number near the point $x = \pi$, but if x tends to π then $\cos x$ tends to 1 ($\cos x \approx 1$), and $\sin x$ tends to 0, so the fraction $\cos x/\sin x = \cot x$ tends to infinity and we can write

$$\lim_{x \rightarrow \pi} \cot x = \infty.$$

2. It is also useful to sketch the function graph on the segment $[2, 4]$.

From this graph one can see that the function $2 - |-x|$ approaches -1 as x approaches 3 . It is easy to explain. We have $|-x| = |x|$, if $x \geq 2$, then $|x| = x$, and by using the well known limit theorems we obtain

$$\lim_{x \rightarrow 3} (2 - |-x|) = \lim_{x \rightarrow 3} (2 - x) = \lim_{x \rightarrow 3} 2 - \lim_{x \rightarrow 3} x = 2 - 3 = -1.$$