Answer on Question \#38660 - Math - Statistics and Probability

A chartered accountant applies for a job in two firms X and Y. He estimates that the probability of his being selected in firm X is 0.7 and beig rejected in Y is 0.5 and the probability that atleast one of his applications rejected is 0.6 . What is the probability that he will be selected in one of the firms?

	Rejected	Accepted
Firm X	$1-0.7=0.3$	0.7
Firm Y	0.5	$1-0.5=0.5$
	0.6	0.4

$A="$ selected in firm X ", $B=$ "selected in firm Y ", $C=$ "selected at least in one of the firms",
$D=(\bar{A} \cap B) \cup(A \cap \bar{B}) \cup(\bar{A} \cap \bar{B})=$ "at least one of his applications is rejected".
By assignment statement, $\operatorname{Pr}(D)=0.6$. Then
$\operatorname{Pr}(A \cap B)=1-\operatorname{Pr}(D)=1-0.6=0.4$
Probability that at least one of applications will be selected:
$\operatorname{Pr}(\mathrm{C})=\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)=0.7+0.5-0.4=0.8$
Probability that exactly one of application will be selected
$\operatorname{Pr}(\mathrm{E})=\operatorname{Pr}((A \cap \bar{B}) \cup(\bar{A} \cap B))=\operatorname{Pr}(A \cap \bar{B})+\operatorname{Pr}(\bar{A} \cap B)=\operatorname{Pr}(A / \bar{B}) \operatorname{Pr}(\bar{B})+\operatorname{Pr}(\bar{A} / B) \operatorname{Pr}(B)$
We cannot calculate this probability without additional assumptions. If we assume that events A and B are independent, then $\operatorname{Pr}(A / \bar{B})=\operatorname{Pr}(A), \operatorname{Pr}(\bar{A} / B)=\operatorname{Pr}(\bar{A})$.

Finally, with additional assumption we have that probability that exactly one of application will be selected $\operatorname{Pr}(\mathrm{E})=\operatorname{Pr}(A / \bar{B}) \operatorname{Pr}(\bar{B})+\operatorname{Pr}(\bar{A} / B) \operatorname{Pr}(B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(\bar{B})+\operatorname{Pr}(\bar{A}) \cdot \operatorname{Pr}(B)=0.7 \cdot 0.5+0.3 \cdot 0.5=0.5$

