Answer on question 38563 - Math - Algorithms

To get to the point ($N ; M$) from the point $(0 ; 0)$, we have to go at least N units to the right and M units up. If we go exactly N steps to the right and M steps up we get the shortest route and it is equal to $\mathrm{M}+\mathrm{N}$.

About the second question: How many different shortest routes are there?
We have to do N steps to the right and other up. How many different combinations to do this? It is equal to the number of ways to place the N steps to the right into $\mathrm{N}+\mathrm{M}$ places. And it is equal to

$$
A_{N+M}^{N}=A_{N+M}^{M}=(N+M)(N+M-1) \ldots(M+1) .
$$

Answer: $\mathrm{N}+\mathrm{M} ;(N+M)(N+M-1) \ldots(M+1)$.

