Answer on Question \#38456 - Math - Other

If $S 1$ be the sum of $(2 n+1)$ terms of an AP and S2 be the sum of its odd terms then prove that $S 1: S 2=(2 n+1):(n+1)$.

Solution:

Let the first term and the common difference the A.P. be a and d respectively:

$$
\mathrm{S}_{1}=\frac{2 \mathrm{n}+1}{2}[2 \mathrm{a}+\{(2 \mathrm{n}+1)-1\} \mathrm{d}]=\frac{2 \mathrm{n}+1}{2} \times 2[\mathrm{a}+\mathrm{nd}]=(2 \mathrm{n}+1)(\mathrm{a}+\mathrm{nd})
$$

Now,

$$
\begin{aligned}
S_{2}=a_{1}+a_{3} & +a_{5}+\ldots+a_{2 n+1}=(a)+(a+2 d)+(a+4 d)+\ldots+(a+2 n d) \\
& =(n+1) a+2 \cdot \frac{n(n+1)}{2} d=(n+1) a+n(n+1) d \\
& =(n+1)[a+n d]
\end{aligned}
$$

Hence,

$$
\frac{S_{1}}{S_{2}}=\frac{(2 n+1)(a+n d)}{(n+1)[a+n d]}=\frac{2 n+1}{n+1}
$$

Answer: $\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{2 \mathrm{n}+1}{\mathrm{n}+1}$.

