Answer on Question\#38332-Math - Calculus

Find the function's domain and range. Next, describe level curves of the funtions
a) $f(x, y)=x-y$
b) $f(x, y)=x^{\wedge} 2+y^{\wedge} 2$
c) $f(x, y, z)=x+y+z$

Solution

a) $f(x, y)=x-y$

The domain is all the values that go into a function. Both x and y can be values from -infinity to +infinity (this is the domain)

The range is all the values that are produced by the function, i.e. the values of $f(x, y)$ in this example can range from -infinity to +infinity

Direct Line - graph of a linear function $y=x$. This straight line passes through the origin. As the domain and range are all the values from -infinity to +infinity that the graph of function is all points in the plane.
b) $f(x, y)=x^{\wedge} 2+y^{\wedge} 2$

The domain is all the values that go into a function. Both x and y can be values from -infinity to +infinity (this is the domain)

The range is all non-negative real numbers, $\{f \in R: f \geq 0\}$
The graph of function $x^{\wedge} 2+y^{\wedge} 2=r^{2}$ is a circle centered at the origin. As the domain is the values from -infinity to +infinity that the graph of function is all points in the plane.

c) $f(x, y, z)=x+y+z$

The domain is all the values that go into a function. All x, y and z can be values from -infinity to +infinity (this is the domain)

The range is all real numbers.
Graph of this function is the whole plane in three-dimensional space.

