


**Question #38228, Math, Other**

Prove that tangents drawn at the ends of a diameter of a circle are parallel.

**Solution**

Let  $AB$  be the diameter of a circle with the center  $O$ , the tangent line  $CD$  have the tangency point  $A$  and the tangent line  $EF$  have the tangency point  $B$  (see the figure).



Since the tangent  $CD$  has only one common point  $A$  with the circle, then  $OA$  is the shortest distance from the center  $O$  to any point of the tangent  $CD$ , and hence the diameter  $AB$  is perpendicular to the line  $CD$  and *vice versa*. Similarly, the tangent line  $EF$  is perpendicular to the diameter  $AB$ .

If we assume that these two tangents intersect at some point  $P$ , then two perpendiculars to the line  $AB$  will be dropped from this point, which is impossible. Therefore, we were wrong to assume there was a point of intersection. The tangents do not intersect – they are parallel.