

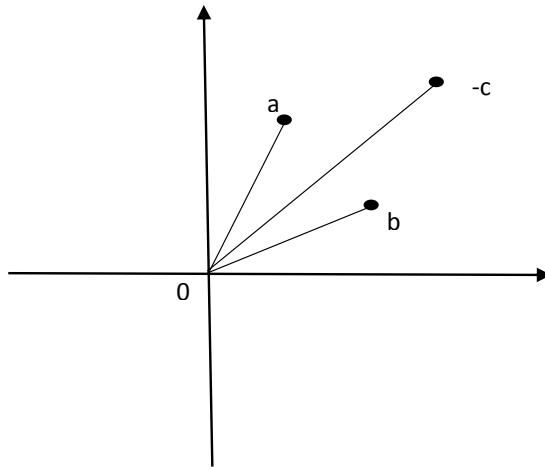
Answer on question 38139 – Math – Complex Analysis

if $\sin A + \sin B + \sin C = 0$, $\cos A + \cos B + \cos C = 0$ then prove that $A - B = 2\pi/3$, $B - C = 2\pi/3$, $C - A = 2\pi/3$

let us consider three complex numbers $a = \cos A + i \sin A$, $b = \cos B + i \sin B$, $c = \cos C + i \sin C$. Moreover, $|a| = |b| = |c| = 1$.

$$a + b + c = (\cos A + \cos B + \cos C) + i(\sin A + \sin B + \sin C) = 0$$

Therefore, $a + b = -c$. Look at the graph



$-c$ is a diagonal of the parallelogram $0a-cb$. We know that $|a| = |b| = |c| = 1$, therefore, we obtain that triangles $0a-c$ and $0-cb$ are equilateral triangles. So the angle $a0b=2*60=120$ degrees or equals $2\pi/3$. This is the angle $A-B$.

Similarly, we can find that $B-C=C-A=2\pi/3$.

QED.