Answer on Question \#38030, Math, Statistics and Probability

Assignment

Heights of women have a bell shaped dist. mean of 160 cm sd $0 f 5 \mathrm{~cm}$ using chebyshev's theorems, what are the minimum and maximum heights that are within 3 standard deviations of the mean.

Solution

We apply one of Chebyshev`s theorem, namely Chebyshev`s inequality

$$
\operatorname{Pr}(|\xi-E \xi|<\varepsilon) \geq \frac{D \xi}{\varepsilon^{2}}
$$

By the statement of the problem, $E \xi=160, D \xi=\sigma^{2}=0.5^{2}, \varepsilon=3 \sigma$, so

$$
\operatorname{Pr}(|\xi-160|<3 \sigma) \geq \frac{0.5^{2}}{9 * 0.5^{2}}=\frac{1}{9} \approx 0.11
$$

Thus, according to Chebyshev`s inequality we state that with probability 0.11 heights of women range from $E \xi-3 \sigma=160-3 * 0.5=158.5$ to $E \xi+3 \sigma=160+3 * 0.5=161.5$
Since we know exact distribution, we can propose more exact value of this probability, i.e.
$\operatorname{Pr}(|\xi-E \xi|<3 \sigma)=\operatorname{Pr}\left(\frac{|\xi-E \xi|}{\sigma}<3\right)=\operatorname{Pr}(|\eta|<3)=\operatorname{Pr}(-3<\eta<3)=$ $=\operatorname{Pr}(\eta<3)-\operatorname{Pr}(\eta<-3)=F(3)-F(-3)=2 * 0.49865=09973$
(this value is more exact than one from Chebyshev's inequality), where $F(x)$ is cumulative distribution function of the standard normally distributed variable $\eta=\frac{\xi-E \xi}{\sigma}$.
Answer: 158.5; 161.5

