Question \#37915, Math, Algebra

Condense to a single log expression:
[1-5log3x]/2

Solution

1. We can write the equality using the power rule

$$
5 x \log 3=\log 3^{5 x}
$$

Since $\log 10=1$ by using the above equality and the quotient rule the difference can be rewritten as

$$
1-5 \log 3 x=\log \frac{10}{3^{5 x}}
$$

Hence the expression is condensed to a single logarithm by using the power rule and converting the rational exponent into radical notation as

$$
\frac{1-5 \log 3 \cdot x}{2}=\frac{1}{2} \log \frac{10}{3^{5 x}}=\log \left(\frac{10}{3^{5 x}}\right)^{\frac{1}{2}}=\log \sqrt{\frac{10}{3^{5 x}}}
$$

Answer

$\log \sqrt{\frac{10}{3^{5 x}}}$
2. If the parentheses were omitted then we can write the equality using the power rule

$$
5 \log (3 x)=\log \left(3^{5} x^{5}\right)=\log \left(243 x^{5}\right)
$$

Since $\log 10=1$ by using the above equality and the quotient rule the difference can be rewritten as

$$
1-5 \log (3 x)=\log \frac{10}{243 x^{5}}
$$

Hence the expression is condensed to a single logarithm by using the power rule and converting the rational exponent into radical notation as

$$
\frac{1-5 \log (3 x)}{2}=\frac{1}{2} \log \frac{10}{243 x^{5}}=\log \sqrt{\frac{10}{243 x^{5}}}
$$

Answer

$\log \sqrt{\frac{10}{243 x^{5}}}$

