## Answer on Question \#37884, Math, Statistics.

## Problem.

Kindergarten children have heights that are approximately normally distributed about a mean of 39 in . And a standards deviation of $2 \mathrm{in}$. A random sample of size 25 is taken and the mean $X$ is calculated. What is the probability that this mean value Will be between 38.5 and 40.0 inches?

## Solution.

There are parameters of normally distributed population and it is needed to estimate the sample parameters. So, Z-test is convenient to use, where mean is $\mu=39$, standard deviation is $\sigma=$ 2 , the sample size $n=$
25 , the mean of the sample is $X$, for which the interval is $[38.5,40.0]$.

$$
Z_{X}=\frac{X-\mu}{\sigma / \sqrt{n}}
$$

$Z_{40.0}=\frac{40.0-39.0}{\frac{2}{\sqrt{25}}}=2.5$; area to the left of the $Z-$ score is 0.99379 and it is $P\left(Z_{X}<2.5\right)$

$$
Z_{38.5}=\frac{38.5-39.0}{\frac{2}{\sqrt{25}}}=-1.25
$$

area to the left of the $Z-$ score is 0.10565 and it is $P\left(Z_{X}<-1.25\right)$.
Thus, it is possible to find the probability for a mean value to be between 38.5 and 40.0 :

$$
\begin{gathered}
P(38.5<X<40)=P(-1.25<Z<2.5)=P(Z<2.5)-P(Z<-1.25) \\
=0.99379-0.10565=0.88814
\end{gathered}
$$

## Answer.

The possibility is 0.88814

