Answer on Question #37749, Math, Other

We have the game of two players: the public health care and the nature. So, the maxmin method can be used:

F / V	F ₁	<i>F</i> ₂	$\min_F V_i(F_i)$
<i>V</i> ₁	0.85	0.7	0.7
<i>V</i> ₂	0.6	0.9	0.6

There are values of functions v_1 and v_2 in the table in order to values of $F : F_1$ or F_2 . Thus, we can find the maxmin value of $V_i(F)$ for all pairs F (flue) and V (vaccine):

$$\max_{V} \min_{F} V_i(F_i) = 0.7;$$

Then we can find the argument V_i for this value of V =0.7:

$$\arg\max_V(\min_F V_i(F)) = V_1.$$

So, the public health should proceed to make available vaccine V1.