Answer on question 37740 - Math - Calculus

A spotlight on the ground is shining on a wall 20 m away. If a woman 2 m tall walks from the spotlight toward the building at a speed of $1.2 \mathrm{~m} / \mathrm{s}$, how fast is the length of her shadow on the building decreasing when she is 4 m from the building?

Solution

Let x be the distance between the spotlight and the man and y be the length of his shadow on the building (both in meters). Then $\frac{2}{y}=\frac{x}{20}$ and hence $x y=40$. Take derivative on both sides of $x y=40$ with respect to t :

$$
x\left(\frac{d y}{d t}\right)+\left(\frac{d x}{d t}\right) y=0 \Rightarrow \frac{d y}{d t}=-\frac{y}{x}\left(\frac{d x}{d t}\right)
$$

Plug in $\frac{d x}{d t}=1.2, x=20-4=16$ and $y=\frac{40}{16}=2.5$ and we obtain

$$
\frac{d y}{d t}=-\frac{2.5}{16} * 1.2=-0.1875
$$

So his shadow is decreasing at a rate of $0.1875 \mathrm{~m} / \mathrm{s}$.
Answer: $0.1875 \mathrm{~m} / \mathrm{s}$.

