Answer on Question\#31412 - Math - Trigonometry

Condition of the problem:

What is the exact value of $4 \cos \left(540^{\circ}\right)+3 \operatorname{tg}\left(-405^{\circ}\right)$?

Solution:

It is known that

$$
\begin{gathered}
540^{\circ}=3 \pi \\
\cos \left(540^{\circ}\right)=\cos (3 \pi)=-1
\end{gathered}
$$

It is known that

$$
405^{\circ}=360^{\circ}+45^{\circ}
$$

Using next formulas to calculate the $\operatorname{tg}\left(-405^{\circ}\right)$:

$$
\begin{aligned}
& \operatorname{tg}(x)=\frac{\sin (x)}{\cos (x)^{\prime}} \\
& \sin (-x)=-\sin (x), \quad \cos (-x)=\cos (x), \\
& \sin (x+y)=\sin (x) \cos (y)+\sin (y) \cos (x), \\
& \cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y), \\
& \sin \left(360^{\circ}\right)=0, \cos \left(360^{\circ}\right)=1, \\
& \sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}, \quad \cos \left(45^{\circ}\right)=\frac{\sqrt{2}}{2} .
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{tg}\left(-405^{\circ}\right)=\frac{\sin \left(-405^{\circ}\right)}{\cos \left(-405^{\circ}\right)}=\frac{-\sin \left(405^{\circ}\right)}{\cos \left(405^{\circ}\right)}=\frac{-\sin \left(360^{\circ}+45^{\circ}\right)}{\cos \left(360^{\circ}+45^{\circ}\right)}= \\
=\frac{-\sin \left(360^{\circ}\right) \cos \left(45^{\circ}\right)-\sin \left(45^{\circ}\right) \cos \left(360^{\circ}\right)}{\cos \left(360^{\circ}\right) \cos \left(45^{\circ}\right)-\sin \left(45^{\circ}\right) \sin \left(360^{\circ}\right)}=\frac{-\sin \left(45^{\circ}\right)}{\cos \left(45^{\circ}\right)}=\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=-1 .
\end{gathered}
$$

Conclusion:

$$
4 \cos \left(540^{\circ}\right)+3 \operatorname{tg}\left(-405^{\circ}\right)=4 \cdot(-1)+3 \cdot(-1)=-7
$$

Answer: -7.

