

Answer on Question 37681 – Math - Real Analysis

If $a > 0$ and $b > 0$ Show that

$$\lim_{n \rightarrow \infty} \sqrt{(n+a)(n+b)} - n = (a+b)/2$$

Solution

1. The sequence $1/n$ converges to 0 because for given $\varepsilon > 0$ we can choose N such that $N > 1/\varepsilon$.

Then for all $n > N$, $|1/n| < \varepsilon$, so

$$\lim_{n \rightarrow \infty} \frac{1}{n} = 0. \quad (1)$$

The sequence $\frac{1}{\sqrt{n}}$ also converges to 0 because for given $\varepsilon > 0$ we can choose N such that $N > 1/\varepsilon^2$.

Then for all $n > N$, $\left|\frac{1}{\sqrt{n}}\right| < \varepsilon$, so

$$\lim_{n \rightarrow \infty} \frac{1}{\sqrt{n}} = 0. \quad (2)$$

2. If $a > 0$ and $b > 0$ then we have two inequalities

$$\sqrt{1 + \frac{a}{n}} \leq 1 + \frac{\sqrt{a}}{\sqrt{n}} \text{ and } \sqrt{1 + \frac{b}{n}} \leq 1 + \frac{\sqrt{b}}{\sqrt{n}}.$$

Hence,

$$1 \leq \sqrt{\left(1 + \frac{a}{n}\right)\left(1 + \frac{b}{n}\right)} \leq \left(1 + \frac{\sqrt{a}}{\sqrt{n}}\right)\left(1 + \frac{\sqrt{b}}{\sqrt{n}}\right).$$

Using (2) and the limit laws for sequences we conclude that

$$\lim_{n \rightarrow \infty} \left(1 + \frac{\sqrt{a}}{\sqrt{n}}\right) = \lim_{n \rightarrow \infty} \left(1 + \frac{\sqrt{b}}{\sqrt{n}}\right) = 1.$$

Hence, by the Squeeze Theorem we can infer

$$\lim_{n \rightarrow \infty} \sqrt{\left(1 + \frac{a}{n}\right)\left(1 + \frac{b}{n}\right)} = 1. \quad (3)$$

3. We rationalize the numerator, multiplying by the sum of square roots, and introducing this sum as a denominator, giving

$$\sqrt{(n+a)(n+b)} - n = \frac{(a+b)n + ab}{\sqrt{(n+a)(n+b)} + n}.$$

This expression is an " $\frac{\infty}{\infty}$ " type, and we divide the numerator and denominator by n to obtain

$$\sqrt{(n+a)(n+b)} - n = \frac{(a+b) + \frac{ab}{n}}{\sqrt{\left(1 + \frac{a}{n}\right)\left(1 + \frac{b}{n}\right)} + 1} \rightarrow \frac{a+b}{2} \text{ as } n \rightarrow \infty,$$

since using (1) and (3) we can conclude by the limit laws for sequences that the numerator tends to $a+b$ and the denominator tends to 2 as $n \rightarrow \infty$.