Answer on Question 37639 - Math - Calculus

For the function $f(x), f(x)=x+a+$ integral from 0 to 1 of $\{f(t)\}^{\wedge} 2 d t$ is true. What is the maximum value for the constant a ?
a) $-3 / 4$
b) $-1 / 2$
c) $-1 / 3$
d) $1 / 3$
e) $1 / 2$

Solution

The function is given by the equation

$$
\begin{equation*}
f(x)=x+a+\int_{0}^{1} f^{2}(t) d t \tag{1}
\end{equation*}
$$

Since $\int_{0}^{1} f^{2}(t) d t$ is a nonnegative real number, then $b=a+\int_{0}^{1} f^{2}(t) d t$ is also some real number and $b \geq a$. Then from (1) we obtain

$$
\begin{equation*}
f(x)=x+b \tag{2}
\end{equation*}
$$

or $f(t)=t+b$, so

$$
\begin{equation*}
\int_{0}^{1} f^{2}(t) d t=\int_{0}^{1}(t+b)^{2} d t=\left.\frac{(t+b)^{3}}{3}\right|_{0} ^{1}=b^{2}+b+\frac{1}{3} \tag{3}
\end{equation*}
$$

From (1)-(3) we get the following equality:

$$
x+b=x+a+b^{2}+b+1 / 3
$$

Hence,

$$
a=-b^{2}-1 / 3
$$

Since $b \geq a$ we get all possible values of parameter b from the inequality

$$
b^{2}+b+1 / 3 \geq 0
$$

Its solution is all real numbers, so we must find the maximum value for the function $a=-b^{2}-1 / 3$ for all real b. Since $a \leq-1 / 3$ then a takes the maximum value for $b=0$ and it is equal to $-1 / 3$.

Answer

c) $-1 / 3$

