Answer on Question \#37628 - Math - Discrete Mathematics

Question. Find the smallest equivalence relation on $A=\{1,2,3\}$ that contains $(1,2)$ and $(2,3)$.

Solution. By definition a relation R on a set A is an arbitrary subset of $A \times A$. A relation R is called equivalence if
(1) R is reflexive, that is $(x, x) \in R$ for all $x \in A$;
(2) R is symmetric, that is if $(x, y) \in R$, then $(y, x) \in R$ for all $x, y \in A$;
(3) R is transitive, that is if $(x, y),(y, z) \in R$, then $(x, z) \in R$ as well for all $x, y, z \in A$.

Suppose $R \subset A \times A$ is an equivalence relation on $A=\{1,2,3\}$ containing (1,2) and (2,3). We claim that then $R=A \times A$.

Indeed, since R is reflexive, $(1,1),(2,2)$, and $(3,3) \in R$.
As R is transitive, and $(1,2),(2,3) \in R$, we obtain that $(1,3) \in R$ as well.
Since R is symmetric, we get that then $(2,1),(3,2)$ and $(3,1) \in R$ as well.
Thus we see that each element $(i, j) \in A \times A$ belongs to R, and so $R=A \times A$. Thus $R=A \times A$ is a unique equivalence relation on A containing (1,2) and (2,3).
Answer. $R=A \times A$.

