Answer on Question\#37564-Math - Differential Calculus

Find the $n^{\text {th }}$ derivative of
(I.) $\cos m x$
(II.) $\cos 2 x$
(III.) $\cos ^{2} x$

Solution.

(I.) $f(x)=\cos m x$

$$
\begin{aligned}
& f^{\prime}(x)=-m * \sin m x=m * \cos \left(m x-\frac{\pi}{2}\right) \\
& f^{\prime \prime}(x)=-m^{2} * \cos m x=m^{2} * \cos (m x-\pi) \\
& f^{\prime \prime \prime}(x)=m^{3} * \sin m x=m^{3} * \cos \left(m x-\frac{3 \pi}{2}\right)
\end{aligned}
$$

We can now write a formula for the general case (for an arbitrary $n \in \mathbb{N}$):

$$
f^{(n)}(x)=m^{n} * \cos \left(m x-\frac{n * \pi}{2}\right) .
$$

(II.) $g(x)=\cos 2 x$

This is a special case of $\cos m x(m=2)$. Applying the same logic as above, we have $g^{(n)}(x)=2^{n} * \cos \left(2 x-\frac{n * \pi}{2}\right)$.
(III.) $h(x)=\cos ^{2} x=\frac{1}{2} *(1+\cos 2 x)$.
$h^{\prime}(x)=\frac{1}{2} * 2 * \sin 2 x=\frac{2}{2} * \cos \left(2 x-\frac{\pi}{2}\right)$
$h^{\prime \prime}(x)=-2 * \cos 2 x=\frac{2^{2}}{2} * \cos (2 x-\pi)$
$h^{\prime \prime \prime}(x)=4 * \sin 2 x=\frac{2^{3}}{2} * \cos \left(2 x-\frac{3 \pi}{2}\right)$
Thus, for every $n \in \mathbb{N}$:

$$
h^{(n)}(x)=2^{n-1} * \cos \left(2 x-\frac{n * \pi}{2}\right) .
$$

Answer.

(I.) $\cos ^{(\mathrm{n})} m x=m^{n} * \cos \left(m x-\frac{n * \pi}{2}\right)$.
(II.) $\cos ^{(\mathrm{n})} 2 x=2^{n} * \cos \left(2 x-\frac{n * \pi}{2}\right)$.
(III.) $\left(\cos ^{2} x\right)^{(\mathrm{n})}=2^{n-1} * \cos \left(2 x-\frac{n * \pi}{2}\right)$.

