Answer on Question \#37525-Math-Calculus

A particle is moving along the curve $y=\sqrt{x}$. As the particle passes through the point (4,2), its x coordinate increases at a rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the distance from the particle to the origin changing at this instant?

Solution

Let s be the distance of the particle from the origin.
We have $s^{2}=x^{2}+y^{2}=x^{2}+x$, since $y=\sqrt{x}$.
Differentiating with respect to t :
$2 s \frac{d s}{d t}=(2 x+1) \frac{d x}{d t}$
$\frac{d s}{d t}=\frac{2 x+1}{2 \sqrt{x^{2}+x}} \frac{d x}{d t}$
We are given that $\frac{d x}{d t}=3$ at $(4,2)$.
Thus, when $x=4$,
$\frac{d s}{d t}=\frac{2 \cdot 4+1}{2 \sqrt{4^{2}+4}} \cdot 3=\frac{27}{4 \sqrt{5}}=\frac{27 \sqrt{5}}{20}$
So at that instant the distance from the particle to the origin is increasing at $\frac{27 \sqrt{5}}{20} \mathrm{~cm} / \mathrm{s}$.
Answer
$\frac{27 \sqrt{5}}{20} \mathrm{~cm} / \mathrm{s}$

