Answer on Question \#37417 - Math - Differential Calculus

Taylor's theorem.
Suppose $f(x)$ is differentiable at the point $x=b$. Then this function can be expanded into Taylor series at the point $x=b$ and expressed by the following formula

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!}(x-b)^{n}
$$

At first, we should find derivatives of the sine function and its value at the point 0.

$$
\begin{array}{lr}
f^{\prime}(x)=\cos x & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}(0)=-1 \\
f^{(4)}(x)=\sin x & f^{(4)}(0)=0 \\
f^{(5)}(x)=\cos x & f^{(5)}(0)=1
\end{array}
$$

Substituting this into general formula we get

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots
$$

Or in compact sigma notation that is equal to

$$
\sin x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2 n+1}}{(2 n+1)!}
$$

