Answer on Question\# 37458-Math - Graph Theory

Let G be a graph with 100 vertices numbered 1 to 100 . Two vertices i and j are adjacent if $|i-j|=8$ or $|i-j|=12$. The number of connected components in G is
a) 8
b) 12
c) 25
d) 4

Answer:

Consider the case $|\mathrm{i}-\mathrm{j}|=8$:
then we could partition the graph as 8 sets, the vertices in each set are connected:
$s 1\{1,9,17, \ldots\}$, i.e all the vertices of form $8 x+1$ are connected to, $x>=0$
s2 $\{2,10,18, \ldots\}$ i.e all the vertices of form $8 x+2$ are connected,$x>=0$
$s 3\{3,11,19, \ldots\}$ i.e all the vertices of form $8 x+3$ are connected,$x>=0$
s7 $\{7,15, \ldots$.$\} i.e all the vertices of form 8 x+7$ are connected, $x>=0$
s8 $\{8,16, \ldots \ldots\}$ i.e all the vertices of form $8 x$ are connected,$x>=1$.

Now consider the case $|\mathrm{i}-\mathrm{j}|=12$:
observe that 1 and 13 are connected, so s1, s5 together form a component observe that 2 and 14 are connected, so s2, s6 together form a component observe that 3 and 15 are connected, so s3, s7 together form a component observe that 4 and 16 are connected, so $s 4$, s8 together form a component \Rightarrow so total number of components are 4

Answer: d) 4.

