Question\#37457-Mathematics - Geometry

In the coordinate plane the point $X(0,-3)$ is translated to the point $X^{\prime}(-3,0)$. Under the same translation the points $Y(4,-6)$ and the $Z(-4,-5)$ as translated to Y^{\prime} and Z^{\prime} respectively what are the coordinates of Y^{\prime} and Z^{\prime} ?

Solution:
Point $X\left(x_{x}, y_{x}\right)$ is translated using the rule $\left(x_{x}, y_{x}\right) \rightarrow\left(x_{x}+\Delta x, y_{x}+\Delta y\right)$
Given:
$x_{x}=0, \quad y_{x}=-3$
$x_{x}+\Delta x=x_{x}^{\prime}=-3, \quad y_{x}+\Delta y=y_{x}^{\prime}=0$

So
$0+\Delta x=-3,-3+\Delta y=0$
$\Delta x=-3, \quad \Delta y=3$

If the points $Y\left(x_{y}, y_{y}\right)$ and the $Z\left(x_{z}, y_{z}\right)$ translated under the same translation, then
$x^{\prime} y=x_{y}+\Delta x=4-3=1$
$y_{y}^{\prime}=y_{y}+\Delta y=-6+3=3$
$x_{z}^{\prime}=x_{z}+\Delta x=-4-3=-7$
$y_{z}^{\prime}=y_{z}+\Delta y=-5+3=-2$

Given:
$x_{y}=4, y_{y}=-6$ and $x_{z}=-4, y_{z}=-5$, so
$x^{\prime}{ }_{y}=4-3=1$
$y_{y}^{\prime}=-6+3=3$
and
$x_{z}^{\prime}=-4-3=-7$
$y_{z}^{\prime}=-5+3=-2$

Answer: $Y^{\prime}=(1,3)$ and $Z^{\prime}(-7,-2)$

