Answer on Question \#37448 - Math - Geometry

In the coordinate plane the point $\mathrm{X}(0,-3)$ is translated to the point $\mathrm{X}^{\prime}(-3,0)$. Under the same translation the points $\mathrm{Y}(4,-6)$ and the $\mathrm{Z}(-4,-5)$ as translated to Y^{\prime} and Z^{\prime} respectively what are the coordinates of Y^{\prime} and Z^{\prime} ?

Solution

$\mathrm{X}(0,-3)$ is translated to the point $\mathrm{X}^{\prime}(-3,0)$. So

$$
\Delta x=\mathrm{x}_{\mathrm{X}^{\prime}}-\mathrm{x}_{\mathrm{X}}=-3-0=-3
$$

and

$$
\Delta y=\mathrm{y}_{\mathrm{X}},-\mathrm{y}_{\mathrm{X}}=0-(-3)=3
$$

Then for $\mathrm{Y}(4,-6)$ the coordinates of Y^{\prime} are

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{Y}^{\prime}}=\mathrm{x}_{\mathrm{Y}}+\Delta x=4+(-3)=1, \\
& \mathrm{y}_{\mathrm{Y}^{\prime}}=\mathrm{y}_{\mathrm{Y}}+\Delta y=-6+3=-3 .
\end{aligned}
$$

For $\mathrm{Z}(-4,-5)$ the coordinates of Z are

$$
\begin{gathered}
\mathrm{x}_{\mathrm{z}^{\prime}}=\mathrm{x}_{\mathrm{Z}}+\Delta x=-4+(-3)=-7, \\
\mathrm{y}_{\mathrm{Z}^{\prime}}=\mathrm{y}_{\mathrm{Z}}+\Delta y=-5+3=-2 .
\end{gathered}
$$

Answer: $Y^{\prime}(1,-3) ; Z^{\prime}(-7,-2)$.

