Answer on Question\#37428 - Math - Statistics and Probability

Let's denote possible events in such a way:

A - the chosen coin is 2 heads
B - the chosen coin is normal

H - the head turns up each time
We need to find the probability that the chosen coin is two-headed given that heads turned up each time. SO we need to find conditional probability of event A given event H .

$$
P(A \mid H)
$$

By Bayes' theorem:

$$
P(A \mid H)=\frac{P(H \mid A) P(A)}{P(H)}
$$

By law of total probability

$$
P(H)=(H \mid A) P(A)+P(H \mid B) P(B)
$$

Substituting this we get:

$$
P(A \mid H)=\frac{P(H \mid A) P(A)}{P(H \mid A) P(A)+P(H \mid B) P(B)}
$$

Since tosses of 2 heads coin produces only heads,

$$
P(H \mid A)=1
$$

Probability that a head will appear 4 times in case of normal coin:

$$
P(H \mid B)=\left(\frac{1}{2}\right)^{4}=\frac{1}{16}
$$

There are 3 coin totally, and 2 of them are normal, thus

$$
\begin{aligned}
& P(A)=\frac{1}{3} \\
& P(B)=\frac{2}{3}
\end{aligned}
$$

Substituting this numerical values into the formula we get:

$$
P(A \mid H)=\frac{1 \cdot \frac{1}{3}}{1 \cdot \frac{1}{3}+\frac{1}{16} \cdot \frac{2}{3}}=\frac{8}{9}
$$

Thus answer is $\frac{8}{9}$.

