Answer on Question 37427 - Math - Statistics and Probability

We will need the following formula

$$
\begin{equation*}
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{\sum_{k=1}^{n} P\left(B_{k}\right) P\left(A \mid B_{k}\right)} \tag{*}
\end{equation*}
$$

This formula is a special case of the well-known Bayes' Theorem.
Let the events be as followed:
B_{1} : We choose the first urn;
B_{2} : We choose the second urn;
A : We found the gold coin.
We are searching for $P\left(B_{2} \mid A\right)$.
In our problem,
$P\left(B_{1}\right)=P\left(B_{2}\right)=\frac{1}{2}$,
$P\left(A \mid B_{1}\right)=\frac{1}{2}$,
$P\left(A \mid B_{2}\right)=1$
Using (${ }^{*}$), we get

$$
P\left(B_{2} \mid A\right)=\frac{P\left(B_{2}\right) P\left(A \mid B_{2}\right)}{P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)}=\frac{\frac{1}{2} * 1}{\frac{1}{2} * \frac{1}{2}+\frac{1}{2} * 1}=\frac{2}{3} .
$$

Answer: 2/3.

