$f(x)=2 x(x+1)^{2}$

1. Domain: $x \in R$
2. Range: $y \in R$
3. $f(-x)=-2 x(-x+1)^{2}$, hence function is not even nor odd.
4. $\lim _{x \rightarrow \infty} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=-\infty$.
5. $f^{\prime}(x)=2(x+1)^{2}+4 x(x+1)=0$, which has solutions $x=-1$ and $\begin{aligned} x=\frac{-1}{3} \\ \text {. The signs of } f^{\prime}(x) \text { are }\end{aligned}$ as follows: ${ }^{+-+}$for $(-\infty ;-1),\left(-1 ;-\frac{1}{3}\right),\left(\frac{-1}{3} ; \infty\right)$ respectively, hence function is increasing,
decreasing and increasing again on corresponding intervals. $x=-1$ Is local maximum and $x=\frac{-1}{3}$ is local minimum.
6. $f^{\prime \prime}(x)=4 x+8(1+x)=0$, which has solutions $\quad x=\frac{-2}{3}$ - this is the inflection point. For $x \in\left(-\infty,-\frac{2}{3}\right)$, function is concave down and for $x \in\left(\frac{-2}{3}, \infty\right)$ it is concave upward.
7. There are no horizontal and vertical asymptotes. Also there are no slant asymptotes.

