Solution: the equation of the line can also be rewritten in this way $y=x-\frac{1}{2}$. The distance between any point on the plane (x, y) and the point $(-4,3)$ is
$L=\sqrt{(x+4)^{2}+(y-3)^{2}}$
We are looking for the point on the line, which is closest to the point $(-4,3)$, so we substitute the line equation $y=x-\frac{1}{2}$ in the previous expression:
$L=\sqrt{(x+4)^{2}+\left(x-\frac{7}{2}\right)^{2}}$
Now we have the distance between the point $(-4,3)$ and the line as the function of x. Let us find the minimum of this function. The derivative of $L(x)$ is
$L^{\prime}(x)=\frac{2(x+4)+2\left(x-\frac{7}{2}\right)}{2 \sqrt{(x+4)^{2}+\left(x-\frac{7}{2}\right)^{2}}}=\frac{4 x+1}{2 \sqrt{(x+4)^{2}+\left(x-\frac{7}{2}\right)^{2}}}$
From condition $L^{\prime}(x)=0$ we find value x_{0}, for which the distance is minimal:
$L^{\prime}(x)=0 \Rightarrow 4 x+1=0 \Rightarrow x_{0}=-\frac{1}{4}$
Substituting value x_{0} in the line equation $y=x-\frac{1}{2}$ we obtain the ordinate y_{0} of the point $y_{0}=x_{0}-\frac{1}{2}=-\frac{3}{4}$

Finally, we have the point $\left(x_{0}, y_{0}\right)=\left(-\frac{1}{4},-\frac{3}{4}\right)$ on the line $y=x-\frac{1}{2}$, which is closest to the point $(-4,3)$.

Answer: $\left(x_{0}, y_{0}\right)=\left(-\frac{1}{4},-\frac{3}{4}\right)$.

