Answer on Question \#37385 - Math - Calculus

Let n be a number of $\$ 3$ in rent (up or down) and R be a manager's revenue.
For increase in rent:

$$
\begin{aligned}
& R=(120-n)(396+3 n) \\
& R=-3 n^{2}-36 n+47520 \\
& \frac{R}{3}=-n^{2}-12 n+15840
\end{aligned}
$$

and, decrease in rent:

$$
\begin{aligned}
& R=(120+n)(396-3 n) \\
& R=-3 n^{2}+36 n+47520 \\
& \frac{R}{3}=-n^{2}+12 n+15840
\end{aligned}
$$

For rent increase,

$$
\begin{gathered}
\left(\frac{R}{3}\right)^{\prime}=-2 n-12=0 \\
2 n=-12 \\
n_{\max }=-6 \\
\frac{R}{3}=-(-6)^{2}-12 \cdot(-6)+15840 \\
\frac{R}{3}=15876
\end{gathered}
$$

For rent decrease,

$$
\begin{gathered}
\left(\frac{R}{3}\right)^{\prime}=-2 n+12=0 \\
2 n=12 \\
n_{\max }=6 \\
\frac{R}{3}=-6^{2}+12 \cdot 6+15840 \\
\frac{R}{3}=15876
\end{gathered}
$$

Answer: the manager should either increase the rent by $6 \cdot 3=18$ dollars, or he should decrease the rent by 18 dollars, either a rent of $396+18=414$ dollars or $396-18=378$ dollars will maximize revenue.

