$8^{\wedge} 4 / 3=\left(2^{\wedge} 5 x-4\right) / \sqrt{ } 2$ solve for x

Solution

1. If parentheses in the equation have not been omitted then by following the usual rules regarding order of calculations we obtain the linear equation which has the solution:

$$
\frac{8^{4}}{3}=\frac{2^{5} x-4}{\sqrt{2}} \Leftrightarrow \frac{4096 \sqrt{2}}{3}=32 x-4 \Leftrightarrow x=\frac{1024 \sqrt{2}+3}{24}
$$

Answer

$$
x=\frac{1024 \sqrt{2}+3}{24}
$$

2. If parentheses in the equation have been omitted then the equation must be of the form $8^{\wedge}(4 / 3)=\left(2^{\wedge}(5 x-4)\right) / \sqrt{ } 2$. So we have the exponential equation:

$$
8^{4 / 3}=\frac{2^{5 x-4}}{\sqrt{2}}
$$

We rewrite this equation by multiplying its sides by $\sqrt{2}$:

$$
8^{4 / 3} \sqrt{2}=2^{5 x-4}
$$

We note that $8^{4 / 3} \sqrt{2}=2^{\frac{3 \cdot 4}{3}+\frac{1}{2}}=2^{4.5}$. Hence we can write each side as a power of the same number:

$$
2^{4.5}=2^{5 x-4}
$$

Since the bases are the same number, 2 , we can use the base-exponent property and set the exponents equal:

$$
5 x-4=4.5 \Leftrightarrow 5 x=8.5 \Leftrightarrow x=1.7
$$

Answer

$$
x=1.7
$$

