

Show that the set

$$W = \{(x_1, x_2, x_3, x_4) : x_1 + x_2 + x_3 + x_4 = 0\}$$

is a subspace of \mathbb{R}^4 . Verify that $(1, -1, 1, -1)$ and $(1, 0, 0, -1)$ are in W . Find a basis of W containing $(1, -1, 1, -1)$ and $(1, 0, 0, -1)$.

Solution.

We need to prove that $\forall x, y \in W, \forall \alpha, \beta \in \mathbb{R} : \alpha x + \beta y \in W$.

$$\begin{aligned} x &= (x_1, x_2, x_3, x_4), y = (y_1, y_2, y_3, y_4) \Rightarrow \\ \Rightarrow \alpha x + \beta y &= (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + \beta y_3, \alpha x_4 + \beta y_4); \end{aligned}$$

Assume that $x, y \in W$. Hence:

$$\begin{aligned} \alpha x_1 + \beta y_1 + \alpha x_2 + \beta y_2 + \alpha x_3 + \beta y_3 + \alpha x_4 + \beta y_4 &= \\ = \alpha(x_1 + x_2 + x_3 + x_4) + \beta(y_1 + y_2 + y_3 + y_4) &= \alpha \cdot 0 + \beta \cdot 0 = 0 \Rightarrow \alpha x + \beta y \in W. \\ (x_1, x_2, x_3, x_4) = (1, -1, 1, -1) \Rightarrow x_1 + x_2 + x_3 + x_4 &= 1 - 1 + 1 - 1 = 0 \Rightarrow \\ \Rightarrow (1, -1, 1, -1) &\in W. \\ (x_1, x_2, x_3, x_4) = (1, 0, 0, -1) \Rightarrow x_1 + x_2 + x_3 + x_4 &= 1 + 0 + 0 - 1 = 0 \Rightarrow \\ \Rightarrow (1, 0, 0, -1) &\in W. \end{aligned}$$

Consider the following vectors:

$$e_1 = (1, -1, 1, -1), e_2 = (1, 0, 0, -1), e_3 = (0, 1, 0, -1);$$

Prove that $\{e_1, e_2, e_3\}$ is a basis in W . We need to prove that $\{e_1, e_2, e_3\}$ is linearly independent and $\forall x \in W : \exists a_1, a_2, a_3 \in \mathbb{R} : x = a_1 e_1 + a_2 e_2 + a_3 e_3$.

$$a_1 e_1 + a_2 e_2 + a_3 e_3 = (0, 0, 0) \Rightarrow (a_1 + a_2, -a_1 + a_3, a_1, -a_1 - a_2 - a_3) = (0, 0, 0, 0) \Rightarrow$$

$$\Rightarrow \begin{cases} a_1 + a_2 = 0 \\ -a_1 + a_3 = 0 \\ a_1 = 0 \\ -a_1 - a_2 - a_3 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = 0 \\ a_3 = 0 \\ a_1 = 0 \end{cases} \Rightarrow \{e_1, e_2, e_3\} \text{ is linearly independent.}$$

$$\begin{aligned} x \in W \Rightarrow x &= (x_1, x_2, x_3, -x_1 - x_2 - x_3) = x_1(1, 0, 0, -1) + x_2(0, 1, 0, -1) + x_3(0, 0, 1, -1) = \\ &= x_1 e_2 + x_2 e_3 + x_3(e_1 - e_2 + e_3) = x_3 e_1 + (x_1 - x_3) e_2 + (x_2 + x_3) e_3. \end{aligned}$$

Hence, $\{e_1, e_2, e_3\}$ is a basis in W .