Solution

The number of different signals, which can be given from the first flag, is

$$
N_{1}=C_{6}^{1} \cdot P_{1}
$$

Similarly the number of different signals, which can be given from the another flags, is

$$
N_{n}=C_{6}^{n} \cdot P_{n}
$$

where n is a number of flag.
So a sum of different signals is
$N=N_{1}+\cdots N_{6}=\sum_{n=1}^{6} C_{6}^{n} \cdot P_{n}=\frac{6!}{5!\cdot 1!} \cdot 1!+\frac{6!}{4!\cdot 2!} \cdot 2!+\frac{6!}{3!\cdot 3!} \cdot 3!+\frac{6!}{2!\cdot 4!} \cdot 4!+\frac{6!}{1!\cdot 5!} \cdot 5!+$
$+\frac{6!}{0!\cdot 6!} \cdot 6!=6+6 \cdot 5+6 \cdot 5 \cdot 4+6 \cdot 5 \cdot 4 \cdot 3+6!+6!=1956$
Answer: b) 1956.

