Question.

The sides $A B, B C$ And $C A$ of the triangle $A B C$ touches a circle with centre o and radius R at point P, Q, R ...1.prove that $A B+C Q=A C+B Q . . .2$.area of triangle $A B C=1 / 2$ perimeter* radius..

Solution.

1. As circle is inscribed of a triangle we can write the next equalities:

$$
\begin{gather*}
A R=A P, B P=B Q, C R=C Q \tag{1}\\
A B=A P+B P, A C=A R+C R, B C=B Q+C Q \tag{2}
\end{gather*}
$$

So,

$$
\begin{align*}
& A B+C Q=(2) A P+B P+C Q \tag{3}\\
& A C+B Q=(2) A R+C R+B Q \tag{4}
\end{align*}
$$

According to (1) rewrite the eq. (4):

$$
\begin{equation*}
A C+B Q=(2) A R+C R+B Q=(1) A P+C Q+B P \tag{5}
\end{equation*}
$$

Thus, we can see that (5) and (3) is the same. So, we proved that $A B+C Q=A C+B Q$.
2. The area of triangle $A B C$ is:

$$
\begin{gathered}
S_{A B C}=S_{A O C}+S_{A O B}+S_{B O C} \\
S_{A O C}=\frac{1}{2} R * A C \\
S_{A O B}=\frac{1}{2} R * A B
\end{gathered}
$$

$$
S_{B O C}=\frac{1}{2} R * B C
$$

Thus, we have the next equality for area ABC :

$$
S_{A B C}=\frac{1}{2} R * A C+\frac{1}{2} R * A B+\frac{1}{2} R * B C=\frac{1}{2} R *(A B+B C+A C)=\frac{1}{2} R * P,
$$

where P - perimeter ABC .

