The equation $f(t)=\frac{5 t}{t^{2}+3 t+2}$ models the bacteria count, in thousands, for a sample of tap water that is left to sit over time, t , in days. The equation $g(t)=\frac{15 t}{t^{2}+9}$ models the bacteria count, in thousands, for a sample of pond water that is also left to sit over several days. In both models, $t>0$. Will the bacteria count for the tap water sample ever exceed the bacteria count for the pond water? Justify your answer.

Solution.

Let's find points of intersections of the functions $f(t)$ and $g(t)$:

$$
\begin{gathered}
f(t)=g(t), \quad t>0 \\
\left.\frac{5 t}{t^{2}+3 t+2}=\frac{15 t}{t^{2}+9} \right\rvert\, \times \frac{\left(t^{2}+3 t+2\right)\left(t^{2}+9\right)}{t} \\
5\left(t^{2}+9\right)=15\left(t^{2}+3 t+2\right) \\
5 t^{2}+45-15 t^{2}-45 t-30=0 \\
-10 t^{2}-45 t+15=0 \\
2 t^{2}+9 t-3=0 \\
t_{1,2}=\frac{-9 \pm \sqrt{81+4 \cdot 2 \cdot 3}}{4}=\frac{-9 \pm \sqrt{105}}{4} \\
t_{1}=\frac{1}{4}(-9+\sqrt{105}), \quad t_{2}=\frac{1}{4}(-9-\sqrt{105})
\end{gathered}
$$

In both models, $t>0$. Therefore, we have only one solution:

$$
t_{s}=\frac{1}{4}(-9+\sqrt{105}) \approx 0.312
$$

Consider the intervals $t \in\left(0, t_{s}\right)$ and $t \in\left(t_{s}, \infty\right)$. On one of the intervals $f(t)>g(t)$. Let's investigate it:
$t_{I}=0.1 \in\left(0, t_{s}\right):$

$$
f\left(t_{I}\right)=\frac{5 \cdot 0.1}{0.1^{2}+3 \cdot 0.1+2} \approx 0.216, \quad g\left(t_{I}\right)=\frac{15 \cdot 0.1}{0.1^{2}+9} \approx 0.166
$$

So

$$
f\left(t_{I}\right)>g\left(t_{I}\right)
$$

Then

$$
f(t)>g(t) \text { for } t \in\left(0, \frac{1}{4}(-9+\sqrt{105})\right)
$$

It means that the bacteria count for the tap water will exceed the bacteria count for the pond water, when $t<\frac{1}{4}(-9+\sqrt{105})$ days.

Answer:

$$
t<\frac{1}{4}(-9+\sqrt{105}) \text { days }
$$

