The equation $f(t) = \frac{5t}{t^2 + 3t + 2}$ models the bacteria count, in thousands, for a sample of tap water that is left to sit over time, t, in days. The equation $g(t) = \frac{15t}{t^2 + 9}$ models the bacteria count, in thousands, for a sample of pond water that is also left to sit over several days. In both models, t > 0. Will the bacteria count for the tap water sample ever exceed the bacteria count for the pond water? Justify your answer.

Solution.

Let's find points of intersections of the functions f(t) and g(t):

$$f(t) = g(t), \ t > 0$$

$$\frac{5t}{t^2 + 3t + 2} = \frac{15t}{t^2 + 9} \left| \times \frac{(t^2 + 3t + 2)(t^2 + 9)}{t} \right|$$

$$5(t^2 + 9) = 15(t^2 + 3t + 2)$$

$$5t^2 + 45 - 15t^2 - 45t - 30 = 0$$

$$-10t^2 - 45t + 15 = 0$$

$$2t^2 + 9t - 3 = 0$$

$$t_{1,2} = \frac{-9 \pm \sqrt{81 + 4 \cdot 2 \cdot 3}}{4} = \frac{-9 \pm \sqrt{105}}{4}$$

$$t_1 = \frac{1}{4}(-9 + \sqrt{105}), \ t_2 = \frac{1}{4}(-9 - \sqrt{105})$$

In both models, t > 0. Therefore, we have only one solution:

$$t_s = \frac{1}{4} \left(-9 + \sqrt{105} \right) \approx 0.312$$

Consider the intervals $t \in (0, t_s)$ and $t \in (t_s, \infty)$. On one of the intervals f(t) > g(t). Let's investigate it:

 $t_I = 0.1 \in (0, t_s)$:

$$f(t_l) = \frac{5 \cdot 0.1}{0.1^2 + 3 \cdot 0.1 + 2} \approx 0.216, \qquad g(t_l) = \frac{15 \cdot 0.1}{0.1^2 + 9} \approx 0.166$$

So

$$f(t_I) > g(t_I)$$

Then

$$f(t) > g(t) \text{ for } t \in \left(0, \frac{1}{4}(-9 + \sqrt{105})\right)$$

It means that the bacteria count for the tap water will exceed the bacteria count for the pond water, when $t < \frac{1}{4} \left(-9 + \sqrt{105} \right)$ days.

Answer:

$$t < \frac{1}{4} \left(-9 + \sqrt{105} \right)$$
days