Answer on Question#37090 - Math- Other

Let $I_C(x)$ be the indicator function of the closed convex set C. Show that the sub-differential of the function I_C at a point c in C is the normal cone to C at the point c.

Solution.

We have the convex set C and the indicator function $I_{C}(x)$. We know that:

- 1. For $c \notin C$, $\partial I_c(c) = \emptyset$ (by convention).
- 2. For $c \in C$, we have $g \in \partial I_c(c)$ if $I_c(z) \ge I_c(c) + g'(z-c)$, $\forall z \in C$, or equivalently $g'(z-c) \le 0$ for all $z \in C$.

Thus $I_c(c)$ is the normal cone of C at c, denoted $N_c(c)$:

$$N_{\mathcal{C}}(c) = \{g \mid g'(z-c) \leq 0, \forall z \in \mathcal{C}\}.$$

