Answer on question 36977 - Math - Discrete Mathematics

How many solutions are there to the equation $x 1+x 2+x 3+x 4+x 5=21$, where $x i, i=1,2,3,4,5$, is a nonnegative integer such that
a) $x 1 \geq 1$?
b) $x_{i} \geq=2$, for $i=1,2,3,4,5$?
c) $0 \leq x 1 \leq 10$?
d) $0 \leq x 1 \leq 3,1 \leq x 2<4$, and $x 3 \geq 15$?

Solution

a) Let $y_{1}=x_{1}-1, y_{2}=x_{2}, y_{3}=x_{3}, y_{4}=x_{4}, y_{5}=x_{5}$. Substitute these into our equation

$$
y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=20
$$

And $y_{i} \geq 0$ for $\mathrm{i}=1,2,3,4,5$.
There is a 1-1 correspondence between the solutions and reorderings of 20 ones and 4 zeros (y_{1} is the number of ones before the first zero, y_{2} the number of ones between the first and the second zero, and so on).

Hence the answer is

$$
C_{20+4}^{4}=C_{24}^{4}=10626
$$

b) Let $y_{1}=x_{1}-2, y_{2}=x_{2}-2, y_{3}=x_{3}-2, y_{4}=x_{4}-2, y_{5}=x_{5}-2$. Substitute these into our equation

$$
y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=21-10=11
$$

Similarly to the previous case we get

$$
C_{11+4}^{4}=C_{15}^{4}=1365
$$

c) Using the sum rule, the number of solutions with $0 \leq x 1 \leq 10$ added to the number of solutions with $x_{1} \geq 11$ gives all non-negative integer solutions. Thus the number of solutions with $0 \leq x 1 \leq$ 10 is

$$
C_{25}^{4}-C_{14}^{4}=12650-1001=11649
$$

d) Let $y_{1}=x_{1}, y_{2}=x_{2}-1, y_{3}=x_{3}-15, y_{4}=x_{4}, y_{5}=x_{5}$. Substitute these into our equation

$$
y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=21-1-15=5,
$$

where $y_{1} \leq 3, y_{2} \leq 2, y_{i} \geq 0, i=3,4,5$. Similarly to the previous case we get

$$
C_{9}^{4}-C_{6}^{4}-C_{7}^{4}=76
$$

Answer: a) 10626 ; b) 1365 ; c) 11649 ; d) 76.

