Answer on question 36977 - Math - Discrete Mathematics

How many solutions are there to the equation x1+x2+x3+x4+x5=21, where xi, i=1,2,3,4,5, is a nonnegative integer such that

a) $x1 \ge 1?$

b) $x_i \ge = 2$, for i = 1, 2, 3, 4, 5?

c) $0 \le x1 \le 10$?

d) $0 \le x1 \le 3, 1 \le x2 < 4$, and $x3 \ge 15$?

Solution

a) Let $y_1 = x_1 - 1$, $y_2 = x_2$, $y_3 = x_3$, $y_4 = x_4$, $y_5 = x_5$. Substitute these into our equation

$$y_1 + y_2 + y_3 + y_4 + y_5 = 20$$

And $y_i \ge 0$ for i=1, 2, 3, 4, 5.

There is a 1-1 correspondence between the solutions and reorderings of 20 ones and 4 zeros (y_1 is the number of ones before the first zero, y_2 the number of ones between the first and the second zero, and so on).

Hence the answer is

$$C_{20+4}^4 = C_{24}^4 = 10626.$$

b) Let $y_1 = x_1 - 2$, $y_2 = x_2 - 2$, $y_3 = x_3 - 2$, $y_4 = x_4 - 2$, $y_5 = x_5 - 2$. Substitute these into our equation

$$y_1 + y_2 + y_3 + y_4 + y_5 = 21 - 10 = 11$$

Similarly to the previous case we get

$$C_{11+4}^4 = C_{15}^4 = 1365.$$

c) Using the sum rule, the number of solutions with $0 \le x1 \le 10$ added to the number of solutions with $x_1 \ge 11$ gives all non-negative integer solutions. Thus the number of solutions with $0 \le x1 \le 10$ is

C₂₅⁴ - C₁₄⁴ = 12650 - 1001 = 11649.
d) Let
$$y_1 = x_1, y_2 = x_2 - 1, y_3 = x_3 - 15, y_4 = x_4, y_5 = x_5$$
. Substitute these into our equation

$$y_1 + y_2 + y_3 + y_4 + y_5 = 21 - 1 - 15 = 5$$

where $y_1 \le 3$, $y_2 \le 2$, $y_i \ge 0$, i = 3, 4, 5. Similarly to the previous case we get

$$C_9^4 - C_6^4 - C_7^4 = 76.$$

Answer: a) 10626; b) 1365; c) 11649; d) 76.