In a given pentagon $A B C D E$, triangles $A B C, B C D, C D E, D E A$ and $E A B$ all have the same area. The lines $A C$ and $A D$ intersect $B E$ at points M and N. Prove that $B M=E N$.

Solution

$\triangle B C D$ and $\triangle C D E$ are of the same area. $B C D E$ is trapezoid, where $C D \|_{B E}$
likewise, $\triangle B C D=\triangle A B C$, so $A B C D$ is trapezoid, where $B C \|_{A D}$
for $\triangle C D E$ and $\triangle D E A D E \|_{C A}$
from this we can say that $B N D C$ and $M C D E$ are parallelograms
now, $B N=C D=M E$
so, $B M=E N$

