Question: How many solutions are there to the equation
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=29$
where $x_{i} ; i=1 ; 2 ; 3 ; 4 ; 5 ; 6$; is a nonnegative integer such that
a) $x_{i}>1$ for $i=1,2,3,4,5,6$?

Solution: Denote $y_{i}=x_{i}-2, y_{i}$ are nonnegative integers. Then for x_{1} such that $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$ $+x_{6}=29$, we have that $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=29-6^{*} 2=17$.
The number of nonnegative integer solutions of this equation is the number of ways to distribute indistinguishable 17 elements into 6 sets with respect of order of sets. This number is $\binom{17+6-1}{6-1}=\binom{22}{5}=26334$. So, there are 26334 solutions for x_{i}.
Answer: 26334.

